Representation of moving wavefronts of whisker deflection in rat somatosensory cortex.

نویسندگان

  • Patrick J Drew
  • Daniel E Feldman
چکیده

Rats rhythmically sweep their whiskers over object features, generating sequential deflections of whisker arcs. Such moving wavefronts of whisker deflection are likely to be fundamental elements of natural somatosensory input. To determine how moving wavefronts are represented in somatosensory cortex (S1), we measured single- and multiunit neural responses in S1 of anesthetized rats to moving wavefronts applied through a piezoelectric whisker deflector array. Wavefronts consisted of sequential deflections of individual whisker arcs, which moved progressively across the whisker array. Starting position (starting arc), direction, and velocity of wavefronts were varied. Neurons responded strongly only when wavefront starting position included their principal whisker (PW). When wavefronts started at neighboring positions and swept through the PW, responses to the PW arc were suppressed by or=5 ms, was maximal at 20 ms, and recovered within 100-200 ms. Suppression of PW arc responses during wavefronts was largely independent of wavefront direction. However, layer 2/3 neurons showed direction selectivity for responses to the entire wavefront (the entire sequence of SW and PW arc deflection). Wavefront direction selectivity was correlated with receptive field somatotopy and reflected differential responses to the specific SWs that were deflected first in a wavefront. These results indicate that suppressive interwhisker interactions shape responses to wavefronts, resulting in increased salience of wavefront starting position, and, in some neurons, preference for wavefront direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورون‌های لایه IV و V‌‌‌ قشر بارل (بشکه‌ای) در موش صحرایی

Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 3  شماره 

صفحات  -

تاریخ انتشار 2007